
Providing the basis of agreement  and  validation should  be strong  enough reasons  for both  the  client  and  

the  developer  to  do a thorough and  rigorous job of requirement understanding and  specification,  but 

there  are  other  very practical and pressing reasons for having  a good SRS. 

Generally,many  errors  are  made  during  the  requirements phase.  And  an  error  in the  SRS  will 

manifest itself  as  an  error  in the  final system implementing the  SRS. Clearly,  if we want a high-quality 

end product that has  few errors,  we must  begin with  a high-quality SRS. In other  words, we can conclude 

that: 

– A high-quality SRS is a prerequisite to high-quality software. 

Finally,  the quality  of SRS has an impact  on cost (and schedule) of the project. We know that errors  can  

exist in the  SRS. It  is also known  that the  cost  of fixing an error increases almost exponentially as time 

progresses [10, 12]. Hence, by improving  the  quality of requirements, we can have  a huge savings  in the 

future  by having  fewer expensive defect removals.  In other  words, 

– A high-quality SRS reduces the development cost. 

Requirement  Process 

The requirement process is the sequence of activities that need to be performed in the requirements phase 

and that culminate  in producing  a high-quality document containing the SRS. The requirements process 

typically consists of three basic  tasks:  problem  or requirement analysis,  requirements specification,  and 

requirements validation. 

Problem analysis often starts with a high-level “problem  statement.”   During analysis the problem  

domain  and the environment are modeled in an effort to understand the  system  behavior,  constraints on 

the  system,  its inputs  and outputs, etc. The basic purpose  of this activity is to obtain  a thorough 

understanding of what the software needs to provide. Frequently, during analysis, the analyst will have a 

series of meetings with the clients and end users. In the early meetings, the clients and end users will explain 

to the analyst about their work, their  environment, and their needs as they  perceive them.  Any documents 

de- scribing the work or the organization may be given, along with outputs of the existing methods of 

performing  the tasks.  In these early meetings, the analyst is basically the listener,  absorbing  the 

information provided.  Once the analyst understands the system  to some extent, he uses the next  few 

meetings  to seek clarifications  of the parts  he does not understand. He may document the information  or 

build some models, and  he may do some brainstorming or thinking about  what  the system should do. In 

the final few meetings,  the analyst  essentially explains to the client what he understands the system should 

do and uses the meetings  as a means of verifying if what  he proposes the system should do is indeed 

consistent with the objectives  of the clients. The understanding obtained by problem analysis forms the 

basis of requirements specification,  in which the focus is on clearly specifying the requirements in a 

document. Issues such as representation, specification languages,  and tools are  addressed  during  this  

activity. As analysis  produces  large amounts of in- formation  and knowledge with possible redundancies, 

properly  organizing  and describing  the requirements is an important goal of this activity. 

Requirements validation  focuses on ensuring  that what  have been specified in the  SRS are  indeed  all 

the  requirements of the  software  and  making  sure that the SRS is of good quality.  The requirements 

process terminates with the production of the validated SRS. We will discuss this more later in the chapter. 

 



 

 
Figure  3.1: The requirement process. 

 

 
It  should  be pointed out  that the  requirements process is not  a linear  se- quence of these three  activities  

and there is considerable  overlap  and feedback between  these  activities. The  overall  requirement  process  

is shown  in Figure 

3.1. As shown  in the  figure,  from  the  specification  activity we may  go back to the analysis  activity. This 

happens  as frequently  some parts  of the problem are  analyzed  and  then specified  before  other  parts   are  

analyzed  and  speci- fied. Furthermore, the  process of specification  frequently  shows shortcomings in the 

knowledge of the  problem,  thereby necessitating further  analysis.  Once the  specification  is done, it goes 

through the  validation activity. This  activity may  reveal  problems  in the  specification  itself,  which  

requires  going back  to the specification  step,  or may reveal shortcomings in the understanding of the 

problem,  which requires  going back to the analysis  activity. 

 

 

Requirements  Specification 

The  final output is the  SRS document. As analysis  precedes  specification,  the first  question  that arises  

is: If formal  modeling  is done  during  analysis,  why are the  outputs of modeling  not  treated as an SRS? 

The  main  reason  is that modeling generally focuses on the problem structure, not its external  behavior. 

Consequently, things  like user interfaces  are rarely  modeled, whereas they  fre- quently  form a major  

component of the  SRS. Similarly,  for ease of modeling, frequently  “minor  issues”  like erroneous  

situations (e.g.,  error  in output) are rarely  modeled  properly,  whereas  in an  SRS,  behavior  under  such  

situations also has to be specified. Similarly,  performance  constraints, design constraints, standards 

compliance,  recovery,  etc., are not  included  in the  model, but must be specified clearly in the SRS because 

the designer must  know about these to properly  design the  system.  It should therefore be clear that the  

outputs of a model cannot  form a desirable  SRS. 

Desirable Characteristics of an  SRS 

To properly  satisfy the basic goals, an SRS should have certain  properties and should  contain  different 

types of requirements. Some of the desirable  charac- teristics  of an SRS are [53]: 

1.  Correct 

2.  Complete 



3.  Unambiguous 

4.   Verifiable  

5.  Consistent 

6.  Ranked  for importance and/or stability 

An SRS is correct if every requirement included in the SRS represents something required in the final 

system. It is complete if everything the software is supposed to do and the responses of the software to all 

classes of input data are specified in the SRS. It is unambiguous  if and only if every requirement stated has 

one and only one interpretation. Requirements are  often  written in natural language, which is inherently 

ambiguous.  If the  requirements are  specified in a natural language,  the  SRS writer  has to be especially 

careful to ensure  that there  are no ambiguities. 

An  SRS is verifiable if and  only  if every  stated requirement  is verifiable. A requirement is verifiable if 

there  exists  some cost-effective  process that can check  whether  the  final  software  meets  that  requirement. 

Generally,  all the  requirements for software  are  not  of equal  importance. Some are  critical,  others  are  

important but  not  critical,  and  there  are  some which are desirable  but  not  very important. Similarly,  some 

requirements are “core” requirements which are not likely to change as time passes, while others are more 

dependent on time. completeness is perhaps  the most important and also the most difficult property to 

establish.  One of the most common defects in requirements specification  is incompleteness. Missing 

requirements necessitate additions and modifications to the requirements later in the development cycle, which 

are often expensive to incorporate. 

For  iterative  development, as  feedback  is possible and opportunity for change is also there,  the 

specification  can be less detailed.  And if an agile approach is being followed, then  completeness  should be 

sought only for top-level  requirements, as details  may  not  be required  in written form,  and  are  elicited  

when  the  requirement is being  implemented. Together the  performance  and  interface  requirements and  

design  constraints can be called nonfunctional requirements. 

COMPONENTS OF AN  SRS 

Completeness of specifications  is difficult to achieve and even more difficult to verify. Having guidelines 

about what different things an SRS should specify will help in completely  specifying the  requirements. 

The  basic issues an SRS must address  are: 

– Functionality 

– Performance 

– Design constraints imposed on an implementation 

– External interfaces 

Functional requirements specify the expected behavior of the system—which outputs should be 

produced  from the given inputs.  They describe the relation- ship between the input and output of the system. 

An important part  of the  specification  is the  system  behavior  in abnormal situations, like invalid  input  

(which  can occur in many  ways)  or error  during computation. The  functional  requirement must clearly 

state  what  the  system should  do if such situations occur. 

The  performance requirements part of an  SRS  specifies the  performance constraints on the  software  

system.  All the  requirements relating  to  the  per- formance characteristics of the system must be clearly 

specified. There  are two types of performance  requirements: static  and dynamic. 



Static requirements are those that do not impose constraint on the execution characteristics of the  

system.  These  include  requirements like the  number  of terminals  to be supported, the number  of 

simultaneous users to be supported, and  the  number  of files that the  system has to process and  their  sizes. 

These are also called capacity  requirements of the system. 

Dynamic  requirements specify constraints on the execution  behavior  of the system.  These  typically 

include  response  time  and  throughput constraints on the  system.  Response  time  is the  expected  time  

for the  completion  of an op- eration  under  specified circumstances. Throughput is the  expected  number  

of operations that can be performed  in a unit time.  For  example,  the  SRS may specify the  number  of 

transactions that must  be processed  per  unit  time,  or what the response time for a particular command  

should be. Acceptable  ranges of the different performance  parameters should be specified, as well as 

accept- able performance  for both  normal  and peak workload  conditions. 

All of these  requirements should  be stated in measurable terms.  Require- ments such as “response  time  

should  be good” or the  system  must be able to “process all the transactions quickly” are not desirable 

because they are impre- cise and not verifiable. Instead, statements like “the response time of command x 

should be less than  one second 90% of the times” or “a transaction should be processed in less than  one 

second 98% of the times”  should be used to declare performance  specifications. 

An SRS should identify  and specify all such constraints. Some examples  of these are: 

Standards Compliance: This specifies the requirements for the standards the  system must follow. The  

standards may  include  the  report format  and accounting procedures.  There  may  be audit  requirements 

which  may  require logging of operations. 

Hardware Limitations: The  software may  have  to operate  on some ex- isting  or  predetermined 

hardware, thus  imposing  restrictions on  the  design. Hardware  limitations can include  the  type of 

machines  to be used,  operating system  available  on the  system,  languages  supported, and  limits  on 

primary and secondary  storage. 

Reliability and Fault Tolerance: Fault tolerance  requirements can place a major constraint on how the 

system is to be designed, as they make the system more complex and expensive. Recovery requirements are 

often an integral  part here,  detailing   what  the  system  should  do  if some  failure  occurs  to  ensure 

certain  properties. 

Security: Security requirements are becoming increasingly important. These requirements place 

restrictions on the use of certain  commands,  control  access to data,  provide  different kinds of access 

requirements for different people, re- quire the use of passwords  and cryptography techniques, and maintain 

a log of activities  in the  system.  They  may also require  proper  assessment  of security threats, proper  

programming techniques,  and  use of tools to detect  flaws like buffer overflow. 

In the  external  interface  specification  part, all the  interactions of the  soft- ware with people, hardware, 

and other software should be clearly specified. For the user interface, the characteristics of each user 

interface of the software prod- uct should be specified. User interface is becoming increasingly  important 

and must  be given proper  attention. A preliminary user manual  should be created with all user commands,  

screen formats,  an explanation of how the system will appear  to the user, and feedback and error messages. 

Like other  specifications, these  requirements should  be precise and  verifiable.  So, a statement like “the 

system should  be user friendly”  should  be avoided  and  statements like “com- mands  should  be no longer  

than  six characters” or “command names  should reflect the function  they  perform”  used. 



For  hardware interface  requirements, the  SRS  should  specify  the  logical characteristics of each  

interface  between  the  software  product and  the  hard- ware components. If the software is to execute on 

existing hardware or on pre- determined hardware, all the characteristics of the hardware, including memory 

restrictions, should be specified. 

The  interface requirement should specify the interface  with  other  software the system will use or that 

will use the system.  This includes the interface  with the operating system  and other  applications. The 

message content and format of each interface  should be specified. 

Structure of a Requirements Document 

Requirements have to be specified using some specification  language.  Though formal notations exist for 

specifying specific properties of the  system,  natural languages  are now most often used for specifying 

requirements. When  formal languages are employed, they are often used to specify particular properties or 

for specific parts  of the system, as part of the overall SRS. 

The introduction section contains  the purpose,  scope, overview, etc., of the requirements document. 

The  key aspect  here is to clarify the  motivation and business objectives  that are driving  this project,  and 

the scope of the project. The  next  section  gives an  overall  perspective  of the  system—how  it  fits into 

the  larger  system,  and  an  overview  of all  the  requirements of this  system. Detailed  requirements are  

not  mentioned. Product  perspective  is essentially the  relationship of the  product to  other  products; 

defining  if the  product is independent or is a part  of a larger product, and what the principal  interfaces of 

the product are. A general abstract description of the functions to be performed by the product is given. 

Schematic  diagrams  showing a general view of different functions  and their  relationships with each other 

can often be useful. Similarly, typical characteristics of the eventual  end user and general constraints are 

also specified. 
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Figure  3.2: General  structure and detailed structure of an SRS 

 

The  performance  section should  specify both  static  and  dynamic  perfor- mance requirements. All 

factors that constrain the system design are described in the performance  constraints section. The attributes 

section specifies some of the overall attributes that the system should have. Any requirement not covered 

under  these  is listed  under  other  requirements. Design constraints  specify all the constraints imposed on 

design (e.g., security,  fault tolerance,  and standards compliance). 

Functional Specification with Use Cases 

Functional requirements often form the core of a requirements document. The traditional approach for specifying 

functionality is to specify each function that the  system  should  provide.  Use cases specify the  functionality of a 

system  by specifying  the  behavior  of the  system,  captured as  interactions of the  users with  the  system.  Use 

cases can be used to describe  the  business  processes of the  larger  business  or organization that deploys the  

software,  or it  could just describe  the  behavior  of the  software  system.  We will focus on describing  the behavior  

of software  systems  that are to be built. 

Though  use cases are  primarily  for specifying  behavior,  they  can  also be used effectively for analysis.  Later  

when we discuss how to develop use cases, we will discuss how they  can help in eliciting requirements also.Use 

cases drew attention after they were used as part of the object-oriented modeling  approach proposed  by  Jacobson   

Basics 

A software system  (in our case whose requirements are being uncovered)  may be used by many  users, or by other  

systems.  In use case terminology,  an actor is a person  or a system  which uses the  system  for achieving  some goal. 

Note that as an  actor  interacts for achieving  some goal, it  is a logical entity that represents a group of users (people 

or system)  who behave in a similar manner. Different actors  represent groups with different goals. So, it is better to 

have a “receiver”  and  a “sender”  actor rather than  having  a generic “user”  actor for a system in which some 

messages are sent by users and received by some other users. 

A primary  actor is the main actor that initiates a use case (UC) for achieving a goal, and  whose goal satisfaction 

is the  main  objective  of the  use case. The primary  actor  is a  logical concept  and  though  we assume  that the  

primary actor  executes  the  use case, some agent  may  actually  execute  it  on behalf  of the  primary  actor. For  

example,  a VP  may be the  primary  actor  for get sales growth  report by region use case,  though  it may  actually 

be executed  by  an assistant. 

Table  3.1: Use case terms. 

Term Definition 



Actor 

 

Primary   ac- 

tor 

Scenario 

 

Main 

success 

scenario 

Extension 

scenario 

A person  or a system  which uses the  system  being 
built 

for achieving some goal. 

The main actor for whom a use case is initiated and 

whose goal satisfaction is the main objective  of the use 

case. 

A set of actions that are performed to achieve a goal 

under some specified conditions. 

Describes  the  interaction if nothing  fails and  all steps  

in the scenario succeed. 

Describes the system behavior  if some of the steps in 

the main scenario do not complete  successfully. 

Developing Use  Cases 

UCs  not  only  document requirements, as  their  form  is like storytelling and uses text, both  of which are 

easy and natural with different stakeholders, they also are a good medium for discussion and brainstorming. 

Hence, UCs can also be used  for requirements elicitation  and  problem  analysis.  While  developing use 

cases, informal  or formal  models may  also be built,  though  they  are  not required. 

UCs can be evolved in a stepwise refinement manner  with each step adding more details. This approach 

allows UCs to be presented at different levels of ab- straction. Though  any number  of levels of abstraction 

are possible, four natural levels emerge: 
 

– Actors and goals. The actor-goal list enumerates the use cases and specifies the  actors  for each  goal. 

(The  name  of the  use case is generally  the  goal.) This  table  may be extended  by giving a brief 

description of each of the  use cases. At this  level, the  use cases together specify the  scope of the  system 

and  give an overall view of what  it does. Completeness  of functionality can be assessed fairly well by 

reviewing these. 
 

– Main success scenarios. For each of the use cases, the main success scenar- ios are provided  at  this level. 

With  the main scenarios,  the system  behavior for each use case is specified. This description can be 

reviewed to ensure that interests  of all the  stakeholders are met  and  that the  use case is delivering the 

desired behavior. 
 

– Failure  conditions. Once  the  success  scenario  is listed,  all  the  possible failure  conditions  can be 

identified.  At this  level, for each step in the  main success scenario,  the  different ways in which a step  

can fail form the  failure conditions.  Before deciding what  should  be done in these failure conditions 

(which is done at the next level), it is better to enumerate the failure condi- tions and review for 

completeness. 
 

– Failure handling. This  is perhaps  the  most tricky  and  difficult  part of writing a use case. Often the 

focus is so much on the main functionality that people do not pay attention to how failures should be 

handled.  Determining what  should  be  the  behavior  under  different failure  conditions  will often 

identify new business rules or new actors. 
 

The  different levels can  be used  for different purposes.  For  discussion  on overall functionality or 

capabilities of the system, actors and goal-level descrip- tion  is very  useful. Failure  conditions,  on the  



other  hand,  are  very  useful for understanding and  extracting detailed  requirements and  business  rules 

under special 

Other Approaches for  Analysis 
Data Flow Diagrams 

Data  flow diagrams  (also called data  flow graphs)  are commonly  used during problem  analysis.  Data  flow 

diagrams  (DFDs)  are  quite  general  and  are  not limited  to problem  analysis for software requirements 

specification.  They were in use long before  the  software engineering  discipline  began.  DFDs  are  very useful in 

understanding a system  and can be effectively used during  analysis. 

 
In  a  DFD,  data  flows are  identified  by  unique  names.  These  names  are chosen so that they convey some 

meaning about what the data  is. However, for specifying the  precise structure of data  flows, a data  dictionary is 

often used. The associated  data  dictionary states precisely the structure of each data  flow in the  DFD.  To define 

the  data  structure, a regular  expression  type  notation is used. While specifying the structure of a data  item, sequence 

or composition is represented by “+”, selection by vertical  bar “|” (means  one OR the other), and repetition by “*”. 

3.5.2  ER  Diagrams 

Entity relationship diagrams  (ERDs)  have  been  used  for years  for modeling the  data   aspects  of a  system.  An  

ERD  can  be  used  to  model  the  data   in the  system  and  how the  data  items  relate  to each  other,  but  does not  

cover how the  data  is to be processed  or how the  data  is actually  manipulated and changed  in the system.  It is 

used often by database designers to represent the structure of the  database and  is a useful tool for analyzing  software  

systems which employ databases. ER models form the logical database design and can be easily converted  into initial  

table  structure for a relational database. 

ER diagrams  have two main concepts  and  notations to representing them. These are entities  and relationships. 

Entities are the main information holders or concepts  in a system.  Entities can  be viewed  as types which  describe  

all elements of some type which have common properties. Entities are represented as boxes in an ER diagram,  with 

a box representing all instances  of the concept or type the entity is representing. An entity is essentially equivalent to 

a table in a database or a sheet in a spreadsheet, with each row representing an instance of this entity. Entities may 

have attributes, which are properties of the concept being  represented. Attributes can  be viewed as the  columns  of 

the database table and are represented as ellipses attached to the entity. To avoid cluttering, attributes are sometimes  

not shown in an ER diagram. 

Let  us draw  the  ER  diagram  for the  university auction  system,  some use cases of which were discussed earlier. 

From the use cases described, we can easily identify  some  entities—users, categories,  items,  and  bids.  The  

relationships between them are also clear. A user can sell many items, but each item has only one seller, so there  is a 

one-to-many relationship “Sell” between the  user and items.  Similarly,  there  is a one-to-many relationship between  



items  and  bids, between users and bids, and between categories  and items. The ER diagram  of this is shown in 

Figure  3.7. 

 

Figure  3.7: ER diagram  for an auction  system. 

From  the  ER  diagram,  it  is easy to determine the  initial  logical structure of the tables.  Each entity represents 

a table,  and relationships determine  what fields a table must have to support the relationship, in addition to having 

fields for each of the attributes. For  example,  from the  ER diagram  for the  auction system,  we can say that there  

will be four tables  for users,  categories,  items, and bids. As user is related  to item by one-to-many, the item table 

should have a user-ID  field to uniquely  identify  the  user who is selling the  item.  Similarly, the bid table must have 

a user-ID to identify the user who placed the bid, and an item-ID  to identify the item for which the bid has been made. 

Validation 

The  development  of software  starts with  a requirements document, which  is also used to determine eventually 

whether  or not the delivered software system is acceptable. It is therefore  important that the requirements 

specification contains  no errors  and  specifies the  client’s  requirements  correctly.   

Before we discuss validation, let us consider the type of errors that typically occur in an SRS. Many different types 

of errors are possible, but the most common errors  that occur can be classified in four types: omission, inconsistency, 

incorrect fact, and ambiguity. Omission  is a common error in requirements. In this type of error, some user 

requirement is simply not included in the SRS; the omitted requirement may be related  to the behavior  of the  system, 

its performance,  constraints, or any other  factor.  Omission directly  affects the  external completeness  of the SRS.  

Another  common  form  of error  in requirements is inconsistency. Inconsistency  can be due  to  contradictions within  

the  requirements  themselves  or  to  incompatibility of the  stated  requirements with  the actual  requirements of the 

client or with the environment in which the system will operate.  The  third  common  requirement error  is incorrect 

fact.  Errors  of this type occur when some fact recorded  in the SRS is not correct. The fourth common error type is 

ambiguity. Errors  of this type occur when there  are some requirements that have  multiple  meanings,  that is, their  

interpretation  is not unique. 

Requirements review is a review by a group of people to find errors and point out other  matters of 

concern  in the  requirements  specifications  of a system. The  review  group  should  include  the  author 

of the  requirements document, someone who understands the needs of the client, a person of the design 

team, and the person(s)  responsible for maintaining the requirements document. It is also good practice  to 

include  some people not  directly  involved  with  product development, like a software  quality engineer.  

Although  the primary  goal of the review process is to reveal any errors in the requirements, such as 

those discussed earlier, the review process is also used to consider factors affecting quality,  such as 

testability and readability. During the review, one of the jobs of the reviewers is to uncover the requirements 

that are too subjective  and  too difficult to define criteria  for testing  that requirement. During  the  review, 

the  review team  must go through each requirement and  if any errors are there,  then they  discuss and agree 

on the nature of the error. 

Planning a Software Project 



Effort Estimation: effort and  schedule  estimates are essential  prerequisites for planning  the  project.  These  

estimates are  needed before development  is initiated, as they  establish  the  cost and  schedule  goals of 

the project.  Without these,  even simple questions  like “is the project  late?” “are there cost overruns?” and 

“when is the project likely to complete?” cannot be answered. Effort  and  schedule  estimates are  also 

required  for determining the staffing level for a project  during different phases, for the detailed plan,  and 

for project  monitoring. 

The  accuracy  with  which  effort can  be estimated clearly  depends  on the level of information 

available  about  the  project.  The  more detailed  the  infor- mation,  the more accurate the estimation can be. 

Of course, even with all the information available,  the  accuracy  of the  estimates will depend  on the  effec- 

tiveness  and  accuracy  of the  estimation procedures  or models  employed  and the  process.  If from the  

requirements specifications,  the  estimation approach can produce estimates that are within 20% of the actual 

effort about two-thirds of the  time,  then the approach can be considered  good. 

 

Top-Down Estimation Approach 

 

Although  the effort for a project is a function of many parameters, it is generally agreed that the primary  

factor that controls the effort is the size of the project. That is, the  larger  the  project,  the  greater  is the  

effort requirement. The  top- down approach utilizes  this  and  considers  effort as a function  of project  size. 

Note  that to use this  approach, we need to first  determine  the  nature of the function,  and  then  to apply  

the  function,  we need to estimate the  size of the project  for which effort is to be estimated. 

A more general function  for determining effort from size that is commonly 

used is of the form: 

EF F ORT  = a ∗ SI Z E
b 

, 

where  a and  b are  constants [2], and  project  size is generally  in KLOC  (size could also be in another size 

measure  called function  points  which can be de- termined from  requirements). 

Though  size is the  primary  factor  affecting  cost, other  factors  also  have some effect. In  the  COCOMO  

model,  after  determining the  initial  estimate, some other factors are incorporated for obtaining  the final 

estimate. To do this, COCOMO  uses a set of 15 different attributes of a project called cost driver attributes. 

Examples  of the attributes are required  software reliability, product complexity,  analyst  capability, 

application experience, use of modern tools, and required  development schedule.  Each  cost  driver  has  a  

rating  scale,  and  for each rating,  a multiplying factor  is provided.  For  example,  for the  reliability, the 

rating  scale is very low, low, nominal,  high, and very high; the multiplying factors for these ratings  are 

.75, .88, 1.00, 1.15, and 1.40, respectively.  So, if the reliability requirement for the project is judged to be 

low, then the multiplying factor  is .75,  while  if it  is judged  to  be  very  high,  the  factor  is 1.40.  The 

attributes and their multiplying factors for different ratings  are shown in Table 

4.1 [12, 13]. 



 
The  multiplying factors  for all  15 cost  drivers  are  multiplied to  get the effort adjustment factor  

(EAF).  The  final effort estimate, E,  is obtained by multiplying the  initial  estimate by  the  EAF.  In  other  

words,  adjustment is made to the size-based estimate using the rating  for these 15 different factors. 

we want  to 

use COCOMO  for estimation, we should  estimate the  value  of the  different cost drivers.  Suppose we 

expect that the complexity  of the system is high, the programmer capability  is low, and  the  application 

experience  of the  team  is low. All other  factors have a nominal  rating.  From these, the effort adjustment 

factor  (EAF)  is 

 

EAF = 1.15 * 1.17 * 1.13 = 1.52. 

 

The  initial  effort estimate  for the  project is obtained  from the  relevant equa- tions.  We have 

Ei = 3.9 ∗ 2
.91 

= 7.3 PM. 

Using the EAF,  the adjusted effort estimate  is 

E = 1.52 ∗ 7.3 = 11.1 PM. 
From  the  overall estimate, estimates of the  effort required  for the  different phases in the projects  can also 

be determined. This is generally done by using an effort distribution among  phases.  The  percentage  of total 

effort spent in a phase  varies  with  the  type and  size of the  project,  and  can be obtained from data  of 

similar  projects  in  the  past. A general  distribution of effort  among different phases  was discussed in the  

previous  chapter. 

 

Bottom-Up Estimation Approach 

 

A somewhat  different approach for effort estimation is the bottom-up approach. In  this  approach, the  

project  is first  divided  into  tasks  and  then  estimates for the  different  tasks  of the  project  are  obtained. 

From  the estimates of the different tasks, the overall estimate is determined. That is, the overall estimate of 

the project  is derived from the estimates of its parts.  This type of approach is also called  activity-based  

estimation. Essentially, in this  approach the  size and complexity  of the project is captured in the set of 

tasks the project  has to perform. 

The bottom-up approach lends itself to direct estimation of effort; once the project  is partitioned into 

smaller  tasks,  it is possible to directly  estimate the effort required  for them,  especially if tasks  are 

relatively  small. One difficulty in this  approach is that to  get  the  overall  estimate, all the  tasks  have  to  



be enumerated. A risk of bottom-up methods  is that one may omit some activities. Also, directly  estimating 

the  effort for some overhead  tasks,  such  as project management, that span the project  can be difficult. 

 

Project Schedule and Staffing 

 

After  establishing  a  goal  on  the  effort  front, we need  to  establish  the  goal for delivery  schedule.  With  

the  effort estimate  (in person-months), it may be tempting to  pick  any  project  duration based  on 

convenience  and  then  fix a suitable team size to ensure that the total  effort matches the estimate. However, 

as is well known  now, person  and  months  are  not  fully interchangeable in a software  project.  Person  and  

months  can  be interchanged arbitrarily only  if all  the  tasks  in  the  project  can  be  done  in  parallel,  and  

no  communication is needed  between  people performing  the  tasks.  a project with  some estimated effort,  

multiple  schedules  (or project  duration) are indeed  possible. For  example,  for a project  whose effort 

estimate is 56 person-months, a total  schedule  of 8 months  is possible with  7 people. A schedule of 7 months  

with 8 people is also possible, as is a schedule of approximately 9 months  with 6 people. (But  a schedule of 

1 month  with 56 people is not possible. Similarly, no one would execute the project  in 28 months with 2 

people.) In other  words, once the effort is fixed, there  is some flexibility in setting  the schedule by 

appropriately staffing the project,  but this flexibility is not unlimited. 

the  staffing level is not  changed  continuously in a project and  ap- proximations of the Rayleigh curve are used: 

assigning a few people at the start, having  the peak team  during  the coding phase,  and then  leaving a few 

people for integration and  system  testing.  If we consider  design  and  analysis,  build, and  test  as three major  

phases,  the  manpower  ramp-up in projects  typically resembles the function  shown in Figure  4.1  

For ease of scheduling,  particularly for smaller projects,  often the  required people  are  assigned  

together around  the  start of the project.  This  approach can  lead  to  some people  being  unoccupied  at  

the  start and  toward the  end. This slack time is often used for supporting project  activities  like training 

and documentation. 

 

 
 

Figure  4.1: Manpower  ramp-up in a typical project. 

 

 

 

Quality Planning 

Having set the goals for effort and schedule, the goal for the third  key dimension of a project—

quality—needs to be defined. However, unlike schedule and effort, quantified quality goal setting for a project 

and then planning to meet it is much harder.  For effort and schedule goals, we can easily check if a detailed 

plan meets these goals (e.g., by seeing if the last task ends before the target date and if the sum total  of effort 

of all tasks  is less than  the  overall effort goal). For quality, even if we set the  goal in terms of expected  

delivered  defect density,  it is not easy to  plan  for achieving  this goal or for checking  if a plan  can  meet  

these goals. Hence, often, quality  goals are specified in terms of acceptance criteria— the  delivered  software 

should  finally work for all the  situations and  test cases in the acceptance criteria. Having set the goals for 

effort and schedule, the goal for the third  key dimension of a project—quality—needs to be defined. However, 

unlike schedule and effort, quantified quality goal setting for a project and then planning to meet it is much 

harder.  For effort and schedule goals, we can easily check if a detailed plan meets these goals (e.g., by seeing 

if the last task ends before the target date and if the sum total  of effort of all tasks  is less than  the  overall 

effort goal). For quality, even if we set the  goal in terms of expected  delivered  defect density,  it is not easy 



to  plan  for achieving  this goal or for checking  if a plan  can  meet  these goals. Hence, often, quality  goals 

are specified in terms of acceptance criteria— the  delivered  software should  finally work for all the  situations 

and  test cases in the acceptance criteria. 

Software development is a highly  people-oriented activity and  hence  it  is error-prone. In a software  

project,  we start with  no defects  (there  is no soft- ware  to  contain  defects).  Defects  are  injected  into  

the  software being  built during  the  different phases  in the project. That is, during  the  transformation 

from user needs to software  to satisfy  those  needs, defects are injected in the transformation activities  

undertaken. These  injection  stages are primarily  the requirements specification,  the high-level design, the 

detailed  design, and cod- ing. To ensure that high-quality software is delivered, these defects are removed 

through the  quality  control  (QC)  activities. The  QC  activities  for defect re- moval include requirements 

reviews, design reviews, code reviews, unit  testing, integration testing,  system  testing,  acceptance testing,  

etc.  Figure  4.2 shows the process of defect injection  and removal. 

 

Figure  4.2: Defect injection  and removal  cycle. 

As the  final goal is to  deliver  software  with  low defect  density,  ensuring quality  revolves around 

two main themes: reduce the defects being injected, and increase the defects being removed.  The first is 

often done through standards, methodologies,  following of good processes, etc., which help reduce the 

chances of errors  by  the  project personnel.  (There  are  specific techniques  for defect prevention also.) 

The quality plan therefore focuses mostly on planning suitable quality  control  tasks  for removing  defects. 

Risk Management  Planning: 

A software  project is a complex undertaking. Unforeseen  events may have an adverse impact on a project’s 

ability to meet the cost, schedule, or quality goals. Risk management is an attempt to minimize the  chances  

of failure caused  by unplanned events.  The  aim  of risk  management is not  to  avoid  getting into projects  

that have  risks  but  to minimize  the impact  of risks  in the  projects that are undertaken. 

A risk is a probabilistic event—it  may  or may  not  occur. For  this  reason, we frequently  have  an 

optimistic tendency  to simply  not  see risks or to hope that they will not occur. 



c

 
Risk Management Concepts 

Risk  is defined  as an  exposure  to  the  chance  of injury  or loss. That is, risk implies that there  is a 

possibility  that something  negative  may happen Risk  management can  be  considered  as  dealing  with  

the  possibility and actual  occurrence of those events that are not “regular” or commonly expected, that is, 

they  are probabilistic. The  commonly expected  events,  such as people going on leave or some 

requirements changing,  are handled  by normal  project management. So, in  a  sense,  risk  management 

begins  where  normal  project management  ends.  It  deals with  events  that are  infrequent, somewhat  out  

of the control of the project  management, and which can have a major impact on the project. 

Risk Assessment 

The  goal  of risk  assessment is to  prioritize  the  risks  so that  attention and resources can be focused on the 

more risky items. Risk identification is the first step  in risk assessment, which identifies  all the  different 

risks for a particular project.  These risks are project-dependent and identifying  them  is an exercise in  

envisioning  what  can  go wrong.  Methods  that can  aid  risk  identification include  checklists  of possible 

risks, surveys,  meetings  and  brainstorming, and reviews of plans,  processes, and work products 



 
 

Once the probabilities of risks materializing and  losses due to materializa- tion of different 

risks have been analyzed, they can be prioritized. One approach for prioritization is through 

the  concept  of risk  exposure (RE)  [11], which  is sometimes  called risk impact.  RE is 

defined by the relationship   RE  = P rob(U O) ∗ Loss(U O), 

where P rob(U O) is the  probability  of the  risk materializing (i.e.,  undesirable outcome)  and  Loss(U 

O)  is the total  loss incurred  due  to  the  unsatisfactory outcome.  The  loss is not  only the  direct financial  

loss that might be incurred but  also any  loss in terms  of credibility,  future  business,  and  loss of property 

or life. The  RE  is the  expected  value  of the  loss due to a particular risk. For risk prioritization using RE 

is, the higher the RE, the higher the priority  of the risk item. 

Risk Control 

The  main  objective  of risk management  is to  identify  the  top  few risk items and then  focus on 

them.  Once a project  manager  has identified and prioritized the  risks,  the top  risks  can  be  easily  

identified.  The  question  then  becomes what  to do about them.  Knowing the  risks is of value only if you 

can prepare a plan  so that their  consequences  are  minimal—that is the  basic goal of risk management.the 

strategy is to perform the actions that will either reduce the  probability of the  risk  materializing or  reduce  

the loss due  to  the risk materializing. These are called risk mitigation steps. 

Risk prioritization and consequent planning are based on the risk perception at the time the risk analysis 

is performed.  Because risks are probabilistic events that frequently  depend  on external  factors,  the threat 

due to risks may change with time as factors change. Clearly, then,  the risk perception  may also change with  

time. 

 

Project Monitoring Plan 

A project  management  plan  is merely  a document  that can be used to guide the  execution  of a project.  

Even  a good plan  is useless unless  it  is properly executed.  And  execution  cannot  be properly  driven  

by  the  plan  unless  it is monitored carefully and the actual performance  is tracked  against  the plan. 

Monitoring  requires  measurements to be made  to assess the  situation of a project. If measurements are 

to be taken during project execution, we must plan carefully  regarding  what  to measure,  when to measure,  

and  how to measure. Hence, measurement planning  is a key element in project planning.  In addition, how 

the measurement data  will be analyzed and reported must also be planned in advance to avoid the situation 

of collecting data  but not knowing what to do with  it.  Without  careful planning  for data  collection  and  



its analysis,  neither is likely to happen.  In this  section  we discuss the  issues of measurements and project  

tracking. 

Measurements 

The  basic purpose  of measurements in a project  is to provide  data  to project management about  the  

project’s  current state,  such that they  can effectively monitor  and control  the project  and ensure that the 

project  goals are met.  As project goals are established in terms of software to be delivered, cost, schedule, 

and  quality,  for monitoring the state  of a project,  size, effort,  schedule,  and defects  are  the  basic  

measurements that  are  needed. Schedule  is one of the  most  important metrics because  most  projects  are 

driven  by schedules and deadlines.  Only by monitoring the actual  schedule can we properly  assess if the  

project is on time  or if there  is a delay.   

Effort is the main resource consumed  in a software  project.   Consequently, tracking of effort is a key 

activity during monitoring;  it is essential for evaluating whether  the  project  is executing  within  budget.  

For  effort data  some type of timesheet system  is needed  where each person  working  on the  project  enters 

the  amount  of time  spent  on  the  project.  For  better monitoring, the effort spent on various tasks should 

be logged separately. 

Size is another fundamental metric  because   it represents progress  toward delivering the desired 

functionality, and many data  (for example, delivered de- fect density)  are normalized  with respect to size. 

The size of delivered software can be measured  in terms  of LOC (which can be determined through the  

use of regular  editors  and line counters) or function  points.  At a more gross level, just  the number  of 

modules or number  of features  might suffice. 

For effective monitoring, a project  must  plan  for collecting these  measure- ments.  Most often, 

organizations provide tools and policy support for recording this basic data,  which is then  available  to 

project  managers  for tracking. 

Project Monitoring and Tracking 

The main goal of project  managers  for monitoring a project  is to get visibility into the project  execution 

so that they can determine whether  any action needs to  be  taken  to  ensure  that the  project  goals  are  

met.  As project  goals  are in terms  of effort,  schedule,  and  quality,  the  focus of monitoring is on these 

aspects. Different levels of monitoring  might be done for a project. The  three main  levels of monitoring 

are  activity level, status reporting, and  milestone analysis.  Measurements taken  on the project  are 

employed for monitoring. 

Status  reports are often prepared weekly to take stock of what has happened and  what  needs  to  be  

done.  Status reports  typically  contain  a  summary  of the activities  successfully completed  since the last 

status report,  any activities that have  been delayed,  any  issues in the  project that need attention, and  if 

everything is in place for the next week. 

Detailed Scheduling 

The  activities discussed  so far result  in a project  management plan document that establishes  the  

project  goals for effort, schedule,  and  quality;  and  defines the  approach for risk management, ensuring  

quality,  and  project monitoring. Now this overall plan has to be translated into a detailed  action plan which 

can then  be followed in the project,  and which, if followed, will lead to a successful project.  That is, we 

need  to  develop  a detailed  plan  or schedule  of what  to do when such that following this plan will lead 

to delivering the software with expected  quality and  within  cost and  schedule. 

For  the  detailed  schedule,  the  major  phases  identified  during  effort  and schedule estimation, are 

broken into small schedulable  activities in a hierarchi- cal manner.  For example, the detailed  design phase 

can be broken into tasks for developing the detailed  design for each module, review of each detailed  design, 

fixing of defects found, and so on. For each detailed task,  the project  manager estimates the  time  required  



to complete  it  and  assigns  a suitable  resource  so that the overall schedule is met, and the overall effort 

also matches. 

At each level of refinement, the  project  manager  determines the effort  for the  overall  task from  the  

detailed  schedule  and  checks  it  against  the  effort estimates. If this  detailed  schedule  is not  consistent 

with  the  overall  schedule and effort estimates, the detailed  schedule must be changed. 

For  detailed  scheduling,  tools  like Microsoft  Project or a spreadsheet  can be very useful. For each 

lowest-level activity, the project  manager  specifies the effort, duration, start  date,  end  date,  and  resources.  

Dependencies  between activities, due either  to an inherent dependency  (for example, you can conduct a 

unit  test plan  for a program  only after  it has been coded)  or to a resource- related  dependency  (the  same  

resource  is assigned  two tasks),  may  also  be specified. From  these tools the overall effort and schedule 

of higher-level tasks can be determined. 

A detailed  project schedule is never static. Changes may be needed because the  actual progress  in the  

project  may  be different from  what  was planned, because  newer  tasks  are  added  in response  to  change  

requests, or because  of other  unforeseen situations. Changes  are done as and when the need arises. 

The final schedule, frequently  maintained using some suitable  tool, is often the  most  “live”  project  

plan  document. During  the  project,  if plans  must be changed and additional activities  must  be done, 

after the decision is made, the changes  must  be reflected  in the  detailed  schedule,  as this  reflects  the  

tasks actually  planned  to  be performed. 

Software Architecture 

Role of Software Architecture 
What  is architecture? Generally  speaking,  architecture of a system provides  a very high level view of the 

parts  of the system and how they are related  to form the  whole system.  That is, architecture partitions the 

system  in logical parts such  that each  part can be comprehended independently, and  then describes the 

system  in terms  of these parts  and the relationship between these parts. 

Any complex system  can be partitioned in many  different ways, each pro- viding a useful view and 

each having different types of logical parts.  The same holds true for a software  system—there is no unique  

structure of the  system that can be described  by its architecture; there  are many  possible structures. 

An architecture description of a system will therefore  describe the different structures of the system.  

The  next  natural question  is why  should  a  team building  a  software  system  for some customer  be 

interested in creating  and documenting the  structures of the  proposed  system.  Some of the  important 

uses that software  architecture descriptions play are [6, 23, 54]: 

1. Understanding and communication. An architecture description is primar- ily to communicate the  

architecture to its various  stakeholders, which in- clude the users who will use the system,  the clients 

who commissioned  the system,  the  builders  who will build  the  system,  and,  of course,  the archi- 

tects.  Through this  description  the  stakeholders gain an understanding of some macro  properties of 

the  system  and  how the  system  intends  to ful- fill the  functional  and  quality  requirements. 

2. 2.  Reuse.  The  software engineering  world has, for a long time,  been working toward  a discipline  

where software can be assembled  from parts  that are developed  by  different people  and  are  available  

for others  to  use.  If one wants  to  build  a software product in which existing  components  may  be 

reused, then architecture becomes the key point at which reuse at the high- est  level is decided. 

3. Construction  and  Evolution.  As  architecture partitions the  system  into parts, some architecture-

provided partitioning can  naturally be used  for constructing the  system,  which  also requires  that 

the system  be broken into parts  such that different teams (or individuals) can separately work on 

different parts. A suitable  partitioning in the architecture can provide  the project  with the parts  that 

need to be built to build the system 


